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Agent-based micro-simulation models require a complete list of agents with detailed
demographic/socioeconomic information for the purpose of behavior modeling and simu-
lation. This paper introduces a new alternative for population synthesis based on Bayesian
networks. A Bayesian network is a graphical representation of a joint probability distribu-
tion, encoding probabilistic relationships among a set of variables in an efficient way.
Similar to the previously developed probabilistic approach, in this paper, we consider
the population synthesis problem to be the inference of a joint probability distribution.
In this sense, the Bayesian network model becomes an efficient tool that allows us to com-
pactly represent/reproduce the structure of the population system and preserve privacy
and confidentiality in the meanwhile. We demonstrate and assess the performance of this
approach in generating synthetic population for Singapore, by using the Household
Interview Travel Survey (HITS) data as the known test population. Our results show that
the introduced Bayesian network approach is powerful in characterizing the underlying
joint distribution, and meanwhile the overfitting of data can be avoided as much as
possible.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The development of agent-based urban transportation and land use micro-simulation models, such as MATSim1 (Balmer
et al., 2006), UrbanSim2 (Waddell, 2002) and ILUTE3 (Salvini and Miller, 2005), has greatly benefited the process of urban policy
making. In principle, these models simulate the behavior/activity patterns of each agent over time, helping researchers and deci-
sion makers to evaluate the impact of various policy scenarios related to transportation, land use and other urban environmen-
tal issues in a simulation-based setting. As an essential component, these micro-simulation models require a complete list of
agents with detailed demographic and socioeconomic information at both individual and household levels.

Population synthesis is the process to generate an appropriate realization of the entire population, for each region/zone of
interest, as the initial input to the aforementioned micro-simulation models. In doing so, we need to have a comprehensive
understanding about the underlying structure of the studied population. Ideally, such information could be collected from
census data at an individual/household level, and then we can draw a certain amount of samples as synthetic population.
However, the use of such a detailed and disaggregated data set is highly sensitive, since one can easily identify a person
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by filtering people using those presented demographic and socioeconomic criteria. As a result, the use of disaggregated cen-
sus data is highly restricted in most countries and such data is almost never accessible to researchers for the purpose of
urban modeling. Instead of releasing the complete data, most governments and agencies do provide a subset sampled from
the whole population at a rate—ranging from 1% to 10%—for the purpose of urban modeling. This subset of microsamples is
usually referred to as public use micro sample (PUMS). For instance, the Integrated Public Use Microdata Series (IPUMS)4

project collects and distributes PUMS from USA (IPUMS-USA)5 and around the world (IPUMS-International).6 These microdata
sets are made available to researchers for free upon protecting statistical confidentiality. When PUMS is not available or acces-
sible, travel surveys that capture complete demographic and socioeconomic attributes in a comparable sampling rate can act as
a replacement. In addition to these microsamples, aggregated marginal information on regional/zonal level is usually available
from the bureau of statistics. The goal of population synthesis is to effectively and efficiently utilize the available microsam-
ples—together with the complementary aggregated/marginal information on each attribute of interest—to create a realization
of population that could satisfy the underlying population structure as much as possible.

One of the most popular existing techniques for generating synthetic population is Iterative Proportional Fitting (IPF),
which focuses on fitting a contingency table constructed from the microsamples to marginal constraints from aggregated
census data (Beckman et al., 1996; Agresti, 2002). Although IPF was proposed as a general numerical method to analyze con-
tingency tables (Deming and Stephan, 1940), it fits the description of population synthesis problem very well and has long
been considered a milestone in the field of population synthesis research. Given its widespread application, various exten-
sions and mutations have been developed based on the general IPF procedure to generate population with more complex
structures. The classical IPF model can be considered a loglinear model without interactions terms (Agresti, 2002, chap. 8.).

Another branch of models follow a probabilistic framework, which assumes, essentially, all agents come from a popula-
tion that is characterized by an underlying multivariate distribution. Such a joint distribution is capable of capturing not only
the marginal information, but also the complex dependence and higher-order interactions between different variables. By
sampling from this distribution, we are able to create an infinite pool of attribute-stamped population. However, in most
cases this joint distribution is not accessible or manageable directly and to reproduce this joint distribution becomes a pri-
mary task for most population synthesis techniques. As summarized in Caiola and Reiter (2010), current practice typically
employs sequential modeling framework, which impute each variable based on the others (i.e., impute X1 based on
X2;X3; . . . ;Xnð Þ, impute X2 based on X1;X3; . . . ;Xnð Þ, impute X3 based on X1;X2; . . . ;Xnð Þ, and so on). However, considering
the complex interactions among different variables, specifying conditional distributions/models is not a easy task, in partic-
ular when we have many variables of interest.

The purpose of this paper is to introduce a new alternative in the probabilistic framework. We propose to use a Bayesian
network model as an alternative to approximate the inherent joint distribution in a more efficient manner. A Bayesian net-
work encodes probabilistic relationships (causality or dependence) among a set of variables by using a graphical model.
Given the high efficiency and advantages provided by its graphical representation, this data-driven approach is able to deter-
mine the core structure of a population system with a limited number of microsamples. In this sense, Bayesian network
models are powerful tools for learning the structure of population systems, particularly in the case where the number of
attributes of interest is large while the amount of available microsamples are limited. This paper is devoted to illustrating
the application of this new alternative for population synthesis.

The remainder of this paper is structured as follows. In Section 2, we briefly review existing approaches on population
synthesis and the use of Bayesian networks in transportation modeling. In Section 3, we introduce the main methodology
for using Bayesian network to efficiently characterize the core structure of a population system. This structure is then used
as a representation of the underlying joint distribution. With this graphical reorientation and estimated local conditionals,
we can produce a realization of population by sampling the estimated Bayesian network. As an illustration, in Section 4 we
apply the proposed Bayesian network approach to generate synthetic population of Singapore based on information col-
lected from a large-scale travel survey. Concluding remarks are discussed in Section 5.
2. Literature review

Essentially, the development of any population synthesis techniques can be divided into two stages – fitting and gener-
ation (Müller and Axhausen, 2011). The fitting stage aims at characterizing the multiway distribution of all attributes of
interest based on the microsamples and available marginal information. The second stage focuses on generating a list of indi-
viduals/households by sampling from the fitted distribution. The fitting stage has long been considered to be difficult, since it
involves estimating a complex multivariate distribution from limited observations.

To cope with the fitting problem, various techniques have been developed, including the aforementioned IPF and other
Combinatorial Optimization (CO) based approaches. Given its simplicity and good performance, IPF has become the primary
choice in population synthesis since its development (Deming and Stephan, 1940; Beckman et al., 1996). In general, the IPF
model is a particular type of loglinear model that only preserve the main effects. Researchers are making continuous efforts
4 https://www.ipums.org/, Accessed August 8, 2015.
5 https://usa.ipums.org/, Accessed August 8, 2015.
6 https://international.ipums.org/, Accessed August 8, 2015.
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to enrich the application of IPF, developing various extensions and mutations based on its principle to deal with emerging
problems. For example, Pritchard and Miller (2012) proposed to use sparse matrix manipulation techniques to solve the
memory consumption problem when the dimension of the contingency table (number of attributes of interest) is high.
Guo and Bhat (2007) presented an improved IPF procedure to deal with the zero-cell value problem and the consistency
between individual and household level attributes. In order to match household and person attributes as close as possible
in a universal generator, Ye et al. (2009) proposed an Iterative Proportional Updating algorithm to control both levels simul-
taneously. To better control the fitting at both household and individual levels, hierarchical and multi-stage IPF procedures
are proposed to preserve the inter-relationships at these two levels (Casati et al., 2015; Zhu and Ferreira, 2014). The CO
approach tries to assign a weight parameter, which is computed by matching zonal marginals, to each sample (Voas and
Williamson, 2001). This approach is less prevalent than IPF but it is suggested to produce less variance (Ryan et al.,
2009). A comprehensive review about these fitting-based approaches and their extensions could be found in Müller and
Axhausen (2011) and Farooq et al. (2013).

Another crucial shortcoming of these conventional fitting methods, which is less discussed in the literature, is that the
synthesized population is created by cloning/replication rather than a true synthesis (Farooq et al., 2013). As a result, the
quality of synthetic population is highly determined by the accuracy and amount of available microsamples. To build a
model that is more flexible in terms of data requirement, Barthelemy and Toint (2013) developed a sample-free synthesis
procedure based on a three-step optimization approach. However, this approach ignores the dependence between household
and individual levels and does not maintain the consistency in these two layers. There also exists a body of literature in sur-
vey sampling, exploring weighting methods to control marginals at both individual and group levels (Deville et al., 1993;
Casati et al., 2015). To deal with the lack of heterogeneity and the limitation of microsamples, researchers have been devel-
oped other statistical learning-based approaches. The principle of these methods is to update variables sequentially based on
plausible conditional models. For example, Reiter (2005) suggested to use a model to update each variable in sequence, and
in doing so the author employed classification and regression trees (CART) model to characterize conditional distributions
and draw samples. This model has been further developed in Caiola and Reiter (2010), which replaced CART with the more
advantageous random forest (RF). Farooq et al. (2013) proposed to used discrete choice models to estimate those condition-
als and apply Markov chain Monte Carlo (MCMC) algorithm as the data generation model. In the numerical examples, the
authors used directing counting and discrete choice models to construct conditional distributions. In terms of the framework
of population synthesis, the probabilistic approach actually integrates the fitting and generation stages together. Moreover,
instead of cloning individual agents, this approach is able to generate an infinite pool of potential agents as long as a list of
full conditionals are specified in advance. Nevertheless, in practice it is a key challenge to prepare the full conditionals to
initialize the process, since it requires us to have a comprehensive understanding of the underlying system. On the other
hand, as mentioned, the difficulties in preparing full conditionals also increase with number of attributes due to the complex
interactions among them, and thus the probabilistic approach is confined to the curse of dimensionality. With regard to this
problem, one possible solution is to use partial conditionals, which are much simpler, to replace those full conditionals. How-
ever, professional knowledge is often required to identify the crucial relationships.

As an alternative modeling paradigm to identify causality and dependence among a set of random variables, the Bayesian
network is a promising data-driven framework to abstract the complex relationships into a simple graphical model, trans-
ferring complex interdependence patterns into a concise and compact structure (Pearl, 2000; Koller and Friedman, 2009).
Bayesian network models have been extensively used in probabilistic inference and reasoning problems. As a particular case,
it has also been applied to analyze and interpret knowledge from survey data. For example, Sebastiani and Ramoni (2001)
used a Bayesian network model to analyze and efficiently represent the General Household Survey data in UK. In this study,
Bayesian network is used as an efficient tool to encode a complex probability distribution in a compact structure, providing
people with a simple way to retrieve information from the data. Therefore, privacy and confidentiality are well preserved by
using this approach. This also indicates that a Bayesian network model could be used as a possible approximation of the
underlying distribution to produce artificial observations. As its first attempt in travel behavior research, Xie and Waller
(2010) applied a Bayesian network model to quantify model choice behavior using household travel survey in San Francisco.
A tabu search procedure was also presented for efficient structural learning. The successful application of these models also
inspire us to Bayesian network models for the purpose of population synthesis. Further applications of Bayesian network
models in transportation research include, but are not limited to: agent-based activity simulation and prediction
(Janssens et al., 2006), accident/incident modeling (Zhang and Taylor, 2006), and traffic flow prediction (Castillo et al., 2008).
3. Methodology

The general population synthesis problem can be considered to be the inference of a multivariate probability distribution
PðXÞ, where X ¼ X1; . . . ;Xnf g is a set of attributes characterizing the demographic and socioeconomic information of individ-
uals and households. In almost every case, we have little knowledge of PðXÞ, except a set of sampled observations D that
come from PUMS and travel surveys and aggregated marginal distributions from census. The difficulties in estimating
PðXÞ arise from the fact that the number of attributes of interest is often very large, while observations from PUMS and travel
surveys are usually too limited to describe the complex dependence and relationships of the underlying joint distribution
PðXÞ. As a result, it is difficult to draw samples from the unknown joint distribution PðXÞ directly. Essentially, the Bayesian
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network approach that we are to introduce in this paper is also grounded on the inference of the joint distribution PðXÞ.
Before introducing the details of the Bayesian network approach, we first briefly review the strength and weaknesses of
the sequential modeling strategy by taking MCMC as an example.

The principle of the MCMC approach is to use the Gibbs sampler to reproduce a complex joint distribution by exploiting
all of its full conditionals. In doing so, the MCMC approach first prepares full conditional distributions
P XijX1; . . . ;Xi�1;Xiþ1; . . . ;Xnð Þ ¼ P XijX�ið Þ for each variable Xi (we denote X�i as all the other variables except Xi), and then
applies the Gibbs sampler algorithm to draw a sequence of samples by updating each variable in turn. By doing so we also
create an infinite pool of samples. Based on the ergodic theorems, the stationary distribution of those samples generated
from the Gibbs sampler is the target joint distribution (Robert and Casella, 2004). In terms of population synthesis, a Gibbs
sampler could work very well when all full conditionals are well defined and estimated in advance. However, in practice the
required full conditionals are hardly available without a population-scale data set. And even with large amount of data, spec-
ifying parametric models for high-dimensional problem is still resource-intensive Caiola and Reiter (2010). Therefore,
preparing all the full conditional distributions is considered a key challenge in its application. In a case study, Farooq
et al. (2013) constructed P XijX�ið Þ by directly counting frequencies of each outcome from a population-scale data set.
Although the counting method is simple, in reality it is not always a good way to construct conditionals, even based on
the full census. On the one hand, we may over fit P XijX�ið Þ by counting the occurrences when we only have a small set of
subpopulation with X�i ¼ x�i. For instance, if we only have one observation with X�i ¼ x�i, the estimated conditionals of
P XijX�ið Þ will be either 0 or 1, which may not be the correct values we want. This is particularly important if the number
of attributes of interest is large while the relative size of available PUMS is small (in other words, we have a large sparse
contingency table).

To strengthen the applicability of the MCMC approach when observations are limited, Farooq et al. (2013) introduced two
methods to better characterize those full conditionals. The first method is to use parametric models (e.g., discrete choice
models/multinomial linear logistic models) to construct full conditionals. This is similar to applying loglinear models to cap-
ture higher-order interactions in contingency tables (Agresti, 2002, chap. 8). This method enables us to efficiently capture the
complex conditionals, as long as we have a fair understanding about the modeling of the higher-order interactions between
different variables (Casati et al., 2015). However, implementing such a model computationally is challenging, in particular
when the contingency table has enormous number of cells while the number of observations is limited. In order to get a sat-
isfactory goodness of fit, the applied parametrical model has to impose a large number of coefficients to be estimated. The
second method is to use partial/incomplete conditionals P XijX0

�i

� �
(X0

�i #X�i is a subset all other variables) to replace full con-
ditionals P XijX 0

�i

� �
. Indeed, it seems to be reasonable to reduce the size of X�i since not all attributes determines Xi directly,

and by removing the non-relevant variables we can obtain X0
�i in a smaller size. The use of partial/incomplete conditionals

not only prevents overfitting, but also mitigates the risk of encountering incomplete conditional distributions. However, this
reduction essentially ignores some of the higher-order interactions and it should be determined by domain knowledge and
proper assumptions, and thus it is still an open question that which conditional distribution should be simplified and to what
format. In other words, identifying the best subset X0

�i for each variable Xi emerges as a new problem. In summary, specifying
conditional distribution on each variable is still very time-consuming to account for potential joint interactions.

As a model that integrates causal relationships and probabilistic semantics, we consider Bayesian network an alternative
tool to simplify the estimation of the joint distribution PðXÞ. In the following of this section, we propose to apply Bayesian
network models to efficiently approximate/reproduce PðXÞ through identifying the critical relationships among different
attributes in population systems.

3.1. Bayesian networks

The Bayesian network is a graphical model that efficiently encodes probability distributions for a set of variables of interest
(Heckerman, 1998; Pearl, 2000; Koller and Friedman, 2009). Essentially, a Bayesian network for a set of variables
X ¼ X1; . . . ;Xnf g consists of two parts: (1) the qualitative part is a network structure G in the form of a directed acyclic graph
(DAG), in which nodes are in one-to-one mapping with the random variables X and links characterize the dependence among
connected variables, and (2) the quantitative part is a set of local probability distributions/tablesH ¼ P X1jP1ð Þ; . . . ; P XnjPnð Þf g
for each node/variable Xi, conditional on its parentsPi (see Fig. 2 for examples of conditional probability tables). These condi-
tional probability tablesdemonstrate theprobability ofXi with respect to each combinationof its parent variables. In aBayesian
networkwe refer toXj as a parent ofXi if there exists a direct link fromXj toXi.WeusePi to denote the set of parent variables of
Xi. If a variable has no parents, the local probability distribution collapses to itsmarginal P Xð Þ. In a Bayesian networkmodel, we
refer to G as model structure and H as model parameter. The DAG topology of a Bayesian network only asserts conditional
dependence of children given parents. Therefore, by integrating structure G and parameter H, the joint distribution for X in
a Bayesian network can be decomposed, by using the chain rule, into a factorized formwith smaller and local probability dis-
tributions, each of which involves one node and its parents only:
PðXÞ ¼
Yn
i¼1

P XijPið Þ: ð1Þ
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In other words, the joint probability distribution PðXÞ can be exclusively encoded by the pair G;Hð Þ. The Bayesian network
representation allows us to approximate and represent an unknown distribution PðXÞ into a concise graphical form
(PðXÞuPðXÞ). Therefore, in terms of population synthesis, Bayesian network model offers us an intuitive framework to
reproduce the PðXÞ of the studied population system. For example, considering a simple network with two nodes and
one link (age)!(income), the root node tells the probability P ageð Þ of an individual being Y yrs old and the conditional
probability table P incomejageð Þ contains the probability of a person having income M when knowing he/she is Y yrs old
(for all Y). With these two tables we can easily calculate the joint probability of observing an individual with age Y and
income M as P age ¼ Y ; income ¼ Mð Þ ¼ P age ¼ Yð Þ � P income ¼ Mjage ¼ Yð Þ.

We next discuss the concept of Markov blanket and the way to construct full conditionals in a Bayesian network model.
The Markov blanket Mb Xið Þ for a particular node Xi is the union of three sets: (1) its parents, (2) its children, and (3) the co-
parents—a set consists of other parents of its children (excluding Xi). Note that we can derive P XijX�ið Þ ¼ P Xi;X�ið Þ=P X�ið Þ and
by canceling out all terms that do not involve Xi from both numerator and denominator, we have
P XijX�ið Þ / P XijPið Þ
Y

k2ch jð Þ
P XkjPkð Þ; ð2Þ
where ch jð Þ denotes the children nodes of Xi.
Thus, given the expression in Eq. (2), the full conditional distribution P XijX�ið Þ depends only on its Markov blanketMb Xið Þ.

This suggests that the inference and sampling of Xi can be achieved by looking at only its Markov blanket, instead of the full
conditionals. On the other hand, if we assume that PðXÞ is indeed characterized by a Bayesian network, then an arbitrary
simplification of full conditionals—even with professional domain knowledge—could be problematic. This also gives out a
warning to the use of partial/incomplete conditionals to replace full conditionals in the MCMC approach. Particularly, one
is required to identify the full Markov blanket instead of the parent set only.

3.2. Model selection and optimization

Having seen the definition of Bayesian networks, we next briefly introduce the learning problem in Bayesian
network analysis. Details about learning Bayesian network models could be found in most textbooks and tutorials
(Heckerman et al., 1995; Heckerman, 1998; Pearl, 2000). There are two types of learning problem given a set of
observations D: (1) learning only model parameter H when network structure G is known, and (2) learning both model
structure G and model parameter H. For the first type, one needs to pre-define the network structure. An intuitive way
to do so is to build G based on expert knowledge. In this case, the variables are identified and causal relationships are
asserted by using professional domain knowledge. After knowing network structure G, the estimation of local
probability H becomes straightforward by applying maximum likelihood (ML) or Bayesian estimation if prior
knowledge is available.

However, most practical problems belong to the second category, in which expert knowledge is not available or not suf-
ficient enough for us to build the network structure from scratch. Therefore, we should make full use of available observa-
tions to learn G and H simultaneously. This process is often referred to as structural learning. In general, structural learning
can be divided into two stages: model selection and model optimization. In the selection stage, we try to use a universal cri-

teria to evaluate the quality of different hypothetical structure Gh. In the optimization stage, we focus on identifying the best
structure.

To proceed with selection, we usually apply a score-based approach, computing a score function that quantifies how well

a hypothetical structure Gh fits the data. In doing so, the estimation of local probability Ĥ is used as an inner loop to quantify

score of Gh. Intuitively, a natural candidate score function to quantify the quality of a Bayesian network model is the max-
imum likelihood:
l GhjD
� �

¼ max
G

sup
H

l G;HjDð Þ ¼ max
G

lðG; ĤjDÞ; ð3Þ
where l G;HjDð Þ ¼ logP DjG;Hð Þ is the log-likelihood of a provided pair G;Hð Þ given observation D. However, log-likelihood is
actually not an appropriate score function. On one hand, maximizing likelihood will always lead to a fully connected (com-
plete) DAG, in which every pair of nodes are connected, regardless of what the underlying structure should be. This is

because adding a link in an incomplete network will always increase or at least maintain l GhjD
� �

. Introducing a new link

will also increase the complexity of a model, since more parameters are introduced to estimate the local conditionals. This
makes us over weight the characteristics of the sample, which may not representative in the underlying population struc-
ture. As a result, the large size of parameters and the high complexity of a complete DAG will lead to the problem of
overfitting.

In practice the most used score function is the Bayesian information criterion (BIC), which is defined by (Schwarz, 1978):
BIC GhjD
� �

¼ log P DjGh; Ĥ
� �

� d
2
logm; ð4Þ
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where Ĥ is the maximum likelihood estimates of parameter given a hypothetical structure Gh; d is the number of free param-
eters (degrees of freedom) inH, andm is the size of observation D. As can be seen, the first term on the right hand side is the

optimal likelihood, which quantifies how well the hypothetical structure Gh fits the data; the second term is a penalty func-
tion on the complexity of the model, preventing the overall structural learning process from overfitting. The structure of BIC
make it a very prevalent choice practically when sample size is large.

Another popular candidate score function is the so-called Akaike information criterion (AIC), which is given by (Akaike,
1974):
AIC GhjD
� �

¼ log P DjGh; Ĥ
� �

� d: ð5Þ
Similar to the definition of BIC, AIC also consists of two parts. The first term is still the optimal likelihood, while penalty
term is just the number of free parameters inH, being independent from the size of observations. Therefore, both BIC and AIC
are constructed by adding penalty terms to the optimal likelihood, which balances model fit and model complexity. The only
difference between them is that BIC penalize free parameters more strongly than AIC. Other score functions, such as Cooper–
Herskovits (CH) score, minimum description length (MDL), holdout validation likelihood (HVL) and cross validation likeli-
hood (CVL), could also employed under different scenarios (e.g., when data is divided into training set and test set).

After selecting a score function, the goal of the optimization stage is to identify the hypothetical structure with the high-
est score. Ideally, a straightforward way is to enumerate all potential candidates and evaluate score of each of them. How-
ever, in practice this is infeasible as the number of candidates increase super-exponentially with the number of
nodes/variables (Robinson, 1973). For example, a network with six nodes has about 3 million possible DAGs, and this number
becomes 1.1 billion when it has seven nodes. To cope with this problem, the common approach is to apply heuristic search
techniques, including hill-climbing, hill-climbing with restarts, tabu, best-first search, K2, and MCMC methods (Heckerman,
1998).

Tabu search method is an iterative searching procedure to move from one solution to its neighboring solution until some
stopping criterion is satisfied (Glover and Laguna, 1997). Although tabu search is still a local searching technique, its perfor-
mance is enhanced by using a memory structure (tabu list) while exploring the neighborhood of each solution during the
searching processes. Tabu search is also capable of escaping from local optima, in which normal local search techniques often
get stuck. We refer the readers to Glover and Laguna (1997) for a complete description of this technique. We will also skip
the details about other heuristic search technique. Interested readers may be referred to the tutorial of Heckerman (1998)
and references inside for more on these heuristic algorithms. Similar to the MCMC approach, the Bayesian network method
does not require marginals as input. Moreover, it does not require any conditionals as well, since structure learning and
parameter estimation are integrated in the learning of a Bayesian network model. Therefore, despite the set of observations
D, the only input that is required in learning a Bayesian network model is a specified score function (e.g., BIC and AIC). For
structure learning, we used the R package bnlearn, which implements tabu search as one of the score-based structure
learning algorithms (R Core Team, 2015; Scutari, 2010).

3.3. Realization of synthetic population

As mentioned, an interpretation of the population synthesis problem is to produce a pool of samples from PðXÞ. After
learning both model structure and model parameter, we can generate/sample values of X given the factorized joint proba-
bility distribution PðXÞ defined by the Bayesian network. Unlike the MCMC approach, samples generated from the Bayesian
network are independent, and thus the procedure can be paralleled. On the other hand, there is no need to thin the results to
reduce correlation between sequential samples. In fact, using the factored decomposition introduced in Eq. (1), one can also
compute the probability of observing a particular sample realization X1 ¼ x1; . . . ;Xk ¼ xkð Þ easily.

The Bayesian network model also provides us with an efficient approach to sample based on evidence. For example, after
learning a Bayesian network for the whole population, we may want to use this model to generate synthetic population in
zonal level, in which each zone has unique marginal distributions on one or more variables. In this case, we may use this
information (e.g., the marginal distributions or cross validation tables) as evidence to control the global sampling of X. A
more appropriate sampling technique, such as Gibbs sampling and forward sampling, might be used to match the known
evidence. In fact, in the early development of MCMC, one of the obvious applications of the Gibbs sampler is on graphical
models.

As the learning of Bayesian networks relies on observation D, the quality and quantity of D may determine the function-
ality of estimated Bayesian network substantially. As mentioned, in applying the MCMC approach, we are likely to encounter
the problem of unidentified distributions and overfitting when the amount of observations is not enough. Although Bayesian
network models have made the structure of local conditional as concise as possible (reducing full conditionals to parent-
based conditionals), in practice a local conditional distribution may still be not fully estimated when a combination of parent
setPi ¼ p for variable Xi is not observed in data D. In this case, part of the conditional table P XijPi ¼ pð Þ will be unidentified
and sampling Xi givenPi ¼ p is impossible. This occurrence of unidentified local conditional distributions increases with the
size (in terms of number of potential combinations) of parent set. In other words, the larger the size of a parent set is, the
higher the chance we will encounter unidentified local conditional distributions. This is particularly worth noting when the
estimated Bayesian network is used for prediction and sampling purpose, since sampling from an unidentified conditional
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probability will give us a missing entry. To reduce such inconsistence, we would like to keep the structure of a Bayesian net-
work as simple as possible. This can be achieved by adopting an appropriate score function that penalizes model complexity
(e.g., BIC and AIC). On the other hand, we can also reduce the number of categories in each variable, because the total number
of parent combinations gets reduced as well. The problem can also be avoided by adopting a Bayesian framework, specifying
prior distributions (e.g., Dirichelet) of potential parameters.

By sampling from the obtained Bayesian network we are allowed to generate a large list of individuals (or households if
one applied a hierarchical approach as introduced in Section 4.3) as population pool. To incorporate marginal information
(e.g., age, sex distribution at zonal level), one may apply survey sampling method to get the weight/probability of each indi-
vidual/household belonging to a particular zone (Deville et al., 1993). Using this weight one may get a designed subset from
the pool for the region of interest.
4. Population synthesis for Singapore

This section is devoted to demonstrating the performance of the proposed Bayesian network approach by conducting
numerical experiments on generating synthetic population in Singapore. In doing so, we also assess the performance of other
existing techniques, including IPF and MCMC. The population data used in the following experiments comes from Household
Interview Travel Survey in 2012 (HITS2012), which is conducted by the Land Transport Authority of Singapore. Two numer-
ical examples are provided in this section, following the proposed hierarchical approach in Casati et al. (2015). The first toy
model focuses on the synthesis of household owners, while the second is a more complex example on both owners and
spouses.

4.1. Data sources

HITS2012 data is an essential input for various urban and transportation planning for Singapore. Planning agencies and
researchers have been using this data set (or similar data sets from other years, e.g., HITS2008) to conduct population syn-
thesis for agent-based urban modeling (Zhu and Ferreira, 2014). The survey collected comprehensive demographic/socioe-
conomic attributes at both individual and household levels, covering 35,714 individuals from 9635 households (about 1% of
the total population). Despite demographic/socioeconomic information, travel information such as trips/journeys in one day
was also registered to study travel behavior and activity patterns. For the purpose of population synthesis, we are interested
in only demographic/socioeconomic data of individuals and households.

To better evaluate the performance of different models, we assume HITS2012 to be a known full population and then use
micro samples (PUMS) that are randomly generated under different sampling rates (ranging from 1% to 100%) as test data
sets.

4.2. A toy model for individual synthesis

We first conduct an experiment on synthesizing individuals (household owners) with seven attributes taken into consid-
eration. Table 1 lists the seven variables of interest and their descriptions. The total number of cells in the contingency table
for IPF is 7� 4� 2� 12� 2� 12� 2 ¼ 32;256.

The owner of a household is determined as the individual with highest income. If there exist multiple candidates, the one
with the highest age is chosen. When a conflict still exists, a randomly selected candidate will be assigned (Casati et al.,
2015). In total, there are 9635 observations in this owner data set (the same as number of household). As mentioned, for this
toy model we consider these observations as known population, and consider samples with different size (1% to 20%, in a 1%
step, of the total population) to be available PUMS. Therefore, only 96 observations are used when sampling rate is 1%.

We next compare the synthesis results of the introduced Bayesian network approach with IPF and MCMC. To make a fair
assessment of MCMC and Bayesian network approaches, we do not provide full population information to either of them. In
this case, we construct full conditionals of MCMC by counting PUMS exclusively. To avoid unidentified conditionals, the ini-
tial seed of the Gibbs chain is randomly selected from each PUMS dataset. In addition to the PUMS data, we also provide IPF
with a set of marginal distributions of all the seven attributes from the full population. In this sense, we provide IPF with
more information than MCMC and Bayesian network approaches. In the learning process of the Bayesian network, we
assume that ‘age’ is a natural attribute that does not depend on any other variables and it is constrained as the root node
in model structure G.

As presented in Section 3, the structure of a Bayesian network model is also determined by the choice of score function. In
order to avoid the change of network structure with varying sample size, we choose AIC as the score function in searching
the best structure. The reason is that AIC is independent from the size of observations, while BIC prefers an overly simplified
model with the increase of sample size (see the penalty terms of Eqs. (4) and (5)). We apply tabu search algorithm, which is
implemented in bnlearn package, to learn the structure of Bayesian networks. To avoid local optima and try to exploit the
space as much as possible, we use a large tabu list with length of 100 and start 24 runs with different initial network struc-
ture in parallel. Other tuning parameters for the tabu method are chosen by their default settings. This parallel multistart
model is applied on each estimation process and the final result is selected as the best one among all the 24 runs given their



Table 1
Attributes of household and owner.

Level Variable Definition [number of categories] Values

Household dwell Dwelling type [7] HDB 1–2 rooms; HDB 3 rooms; HDB 4 rooms; HDB 5 rooms and larger;
Condo; Landed property; Other

eth Ethnicity [4] Chinese; Indian; Malay; Other
car Car availability [2] Yes; No

Individual age Age of owner [12] 15–19; 20–24; 25–29; 30–34; 35–39; 40–44; 45–49; 50–54;
55–59; 60–64; 65–69; 70/ +

sex Gender of owner [2] Male; Female
Inc. Income of owner [12] SGD: No income; 1–999; 1000–1499; 1500–1999; 2000–2499;

2500–2999; 3000–3999; 4000–4999; 5000–5999; 6000–7999; 8000/+; Refused
licen Driving license of owner [2] Yes; No
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scores. The computational time of a tabu search run with a 20% sample on a PC with an Intel Core i7 3.40 GHz and 16 GB RAM
is about 0.17 s.

To quantify the accuracy/fitness of different approaches, we adopt a popular measure in the literature of population syn-
thesis, which is Standard Root Mean Square Errors (SRMSE) defined by Müller and Axhausen (2011):
SRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM1

m1¼1
� � �

XMn

mn¼1
f m1 ;...;mn

� f̂ m1 ;...;mn

� �2
� M1 � � � � �Mnð Þ

r
; ð6Þ
where f m1 ;...;mn
and f̂ m1 ;...;mn are relative frequencies of a particular combination appears in the reference (the known popula-

tion) and synthesized population, respectively; Mi is the total number of categories for attributes Xi; and thus
M1 � � � � �Mn ¼ 32;256 is the total number of cells in the corresponding contingency table. A value of zero means a perfect
match between reference and synthetic population, while a high SRMSE value represents a bad fit. The relative frequency

f̂ m1 ;...;mn is measured from the a pool of synthesized population that is ten times of reference data (for each approach, we cre-
ate 96,350 samples as synthetic population). To take into account the burn-in stage and avoid correlation of sequential sam-
ples in the MCMC approach, the population is created by discarding the first 10,000 samples and selecting every 10th sample
in the following chain. In sampling the Bayesian network model, we only keep the samples without any unidentified entries.

To capture the variance of different approach, we create 16 groups of PUMS for each sampling rate, and thus in total 320
(16� 20) sets of PUMS are generated. As a comparison, we also show the result of direct inflating (expanding/cloning by a
factor—1/rate) the PUMS to match the size of total population. We plot the variation of SRMSE with the size of available
PUMS in Fig. 1a. The markers represent mean values and error bars correspond to the standard deviations of 16 groups of
samples. As can be seen, the performance of all these approaches increases with the size of PUMS.

When sample size is small, the performance of IPF is even worse than directly inflating (DI) the PUMS. This is because the
heterogeneity of PUMS is not enough to calibrate a good contingency table (i.e., the zero-cell problem). Therefore, instead of
improving the fitting, the imposed marginal constraints become a burden to the fitting of joint distribution. The MCMC
approach also exhibits a low accuracy because of the large degrees of freedom in defining the full conditional distributions,
and by the naïve counting we are definitely in the trouble of overfitting: the model may fit the training data (PUMS) very well
but fail to capture the overall relationship at a population scale. In the case of population synthesis where we do not have
enough observations, a complex model could over-capture the feature of those observations rather than the real underlying
structure. This overfitting problem, together with the randomness in the simulation, undermines the performance of MCMC
when sample size is smaller than 20%.

Notably, the Bayesian network (BN) approach always gives the lowest SRMSE values, demonstrating universally good per-
formance, which is almost invariant to the size of PUMS. As a guide, we also depict the marginal distribution on dwelling
type, when the size of PUMS is 20%, in Fig. 1b. The Bayesian network approach provides a similar degree of consistency
as direct expanding. IPF, given its principle, gives a perfect match, while MCMC exhibits strong uncertainty. To explore
why the Bayesian network approach has such good performance, we depict the structure of each estimated Bayesian net-
work. Remarkably, we find that all these structures G are identical, as shown in Fig. 2 (household and owner attributes
are marked in green and red respectively), no matter what the sampling rate is. We also show the conditional probability
table of sex given age and a partial table of dwelling type given owner’s income, car availability and sex. In this case, the
difference and variation of the Bayesian network approach results exclusively from the estimation of model parameter Ĥ
from different PUMS observation D. This invariant structure suggests that the Bayesian network is capable of identifying
the core structure of the underlying population system efficiently. As a matter of fact, it also suggests that the investigated
population (HITS2012) is indeed well characterized by a graphical structure, which can be well captured by using only a 1%
sample set.

To have a better overview about the advantages and disadvantages of each approach, the same experiment is also run
with larger sizes of PUMS (from 30% to 100%). We display the results of mean SRMSE in Fig. 3. As can be seen, IPF and MCMC
begin to outperform the Bayesian network approach when we have 40% of total population as samples, although in practice
we hardly get such a large PUMS. In fact, IPF and direct inflating/expanding will provide us a perfect match when the size of



Fig. 1. Performance comparison of different approaches.

Fig. 2. Model structure G on household[green]/owner[red] information. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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PUMS is 100% (as shown in Fig. 3), since the initial seed is the population itself. In this circumstance, the MCMC approach
also attains the best estimates of those full conditional distributions. However, due to randomness in the simulation pro-
cesses, there is still a small SRMSE in MCMC.

In terms of the Bayesian network approach, however, the SRMSE almost remains at a constant level, with only a little
improvement. As mentioned, the selected score function AIC penalize the complexity (number of free parameters, degrees
of freedom) of Bayesian network models. In this case, the simple model structure G (or limited number of parameters) of the
Bayesian network model can no longer improve the fitness of the complex structure of the underlying joint distribution PðXÞ.
With regard to this fact, we should select a more appropriate score function that better utilizes this new information and
penalizes model complexity even less. For example, an effective alternative is to integrate the prior knowledge as con-
straints, and search for a new structure that maximizes posterior likelihood based on the sample observations (Buntine,
1991; Heckerman et al., 1995; Friedman and Koller, 2003).

As the principle of conventional approach is to replicate/clone the agents with PUMS, in general we also miss the hetero-
geneity of the underlying population and the synthesized population is lack of representativeness. To further access the
goodness of fit in terms of heterogeneity, we calculate the total share of reference data (full census) that are not present

in the synthesized samples L ¼ P
m1 ;...;mn

f m1 ;...;mn
� I f̂ m1 ;...;mn ¼ 0

� �
, where I eð Þ is an indicator function that equals to 1 when

e is true and 0 otherwise. Therefore, the measure L quantifies howmuch heterogeneity we will lose by using a limited PUMS.
Fig. 4 shows the mean and standard deviation of L from 16 groups of PUMS. Clearly, we see that the Bayesian network
approach is superior in enriching model heterogeneity in synthetic population when size of PUMS is less than 70% of the full



Fig. 3. SRMSE with larger sizes of PUMS (ranging from 10% to 100%).
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population, generating samples that are not observed but belong to the underlying population. Given the constraints on
model complexity, it cannot reproduce a 100% match when full census is provided.

In summary, the simplicity of model structure and the fitness to data are two contradictory goals. In practice, we need to
find a compromise solution that takes both aspects into consideration. In the case where we have strong prior knowledge, a
posterior likelihood Bayesian network approach—which integrates the graph models with Bayesian paradigm—seems to be a
good alternative. As our focus is on population synthesis, in this paper we do not explore further the balance between model
complexity and fitness. In the next subsection, we apply the Bayesian network approach on a more general problem—the
synthesis of full household structure. In doing so, we impose a hierarchical structure to represent the configuration of
households.

4.3. A hierarchical household configuration

In this part we apply the Bayesian network approach on a more complex case, which include demographic/socioeconomic
information of both the owner and his/her spouse in the household. Same as the definition in Casati et al. (2015), the spouse
of a household is selected as the agent with the minimum age difference from the owner among those with opposite sex.
Fig. 4. Loss of heterogeneity by using limited PUMS.
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Note that in the reference data a spouse may not be identified in some households (e.g., households with only one agent) and
for this experiment we only have 5383 (<9635) pairs of owners/spouses.

Five more variables are introduced to this hierarchical model, including number of people in the household (npax in six
categories: two; three; four; five; six; seven and above) and another set of demographic/socioeconomic variables for the
spouse. We assume that the new Bayesian network follows a hierarchical structure. In so doing, we impose the attributes
of a spouse to be the children of the aforementioned household/owner attributes in the Bayesian network.

We still apply the AIC as score function and each time a 10% sample of the 5,383 observations (i.e., 538 households) is
used as PUMS in learning the Bayesian network model. Similar to the learning of individuals, the length of tabu list is set
to be 100 and other tuning parameters are set as their default values. The tabu search is run for 24 time in parallel, and each
estimation takes about 2 s. Given the proposed hierarchical household structure, in this new model link directions between
the set of spouse attributes and owner attributes are restricted. These restrictions are considered in generating neighbor
DAGs in the tabu search procedures. This numerical experiment is run for ten times with randomly initialized PUMS.
Remarkably, the resulted optimal Bayesian network structures with the highest AIC scores are all identical (see Fig. 5). In
particular, the partial network that only contains household and owner attributes is identical to the previously estimated
model illustrated in Fig. 3, further confirming the modularity and expandability of Bayesian network models. In other words,
based on its graphical structure, a Bayesian network model can be adapted in a flexible manner: on the one hand, it can be
decomposed into smaller submodels to better focus on particular part of interest; on the other hand, it is also capable of
being expanded to include more variables and the corresponding dependence.

To visualize the goodness of fit, we next map the synthesis results as two-dimensional distributions. As illustrations, here
we only show two sets of joint distributions. Fig. 6 shows the joint distribution of owner income and spouse age in the Baye-
sian network. The results come from one randomly selected case from the ten runs. The left panel and the middle panel
shows the joint distributions in the reference data and the synthesized data, respectively. The right panel displays the fit
of these two dimensions between the two sets of data. As can be seen, these two attributes are definitely not independent,
since each spouse age group has a unique owner income distribution. It is difficult to capture such higher-order interactions
using conventional approach such as IPF. Fig. 7 shows a similar results for the joint distribution on spouse age and dwelling
types. In this case, the two variables are approximately independent. Taken together, despite the variance from sampling,
Bayesian network approach do provide satisfactory goodness of fit, even though only 10% (538) samples are used in the
learning process.
4.4. Generating whole synthesis population

Following this procedure we can further estimate a Bayesian network that characterize the rest people (e.g., children) in
this hierarchical approach as in Casati et al. (2015) to match total number of people (npax). To generate a full household, one
can first sample the information of household, owner and spouse, together with number of people (npax) using the hierar-
chical network in Fig. 5. Then, according to npax and a network that characterize the ‘other’ group, we can generate the rest
people to fill the full household. In doing so, we assume that individuals belong to the ‘other’ group are independent and
exchangeable, which may not be true in reality. For example, age difference of two or more children in a household should
follow a certain distribution, while independent samples generated using in this way prevent us from reproducing the dis-
tribution. In other words, the joint interactions of people in the ‘other’ group may not be preserved. One should pay more
attention if this joint relationships are of interest.

We follow the procedure shown in Fig. 8 for the implementation to generate whole synthesis population for MATSim Sin-
gapore.7 Firstly, we divided all 9635 households into three categories: (1) with single member [535 observations], (2) multiple
member with clear owner-spouse relation [5383 observations], and (3) multiple member without clear owner-spouse relation
(e.g., single parent with children) [3717 observations]. For type (1), a Bayesian network G1 is learnt based on the 535 samples of
household and owner attributes (same as Fig. 2). For type (2), we first estimate a Bayesian network G21 based on 5383 samples
of household, owner and spouse attribute (same as Fig. 5). Next, we create a temporary dataset focusing ‘other’ people in these
household. Taking a household with three children ðC1;C2;C3Þ and two parents (owner and spouse) ðP1; P2Þ as an example,
three ‘other’ observations ðP1; P2;H;C1Þ; ðP1; P2;H;C2Þ and ðP1; P2;H;C3Þ with household information H are created. The size
of this temporary data set equals to the total number of ‘other’ people. Using this data set, we train another network G22 in
which only those links initialized from household, owner, spouse attributes to attributes of the ‘others’ are allowed. From this
network we can identify those factors determining the profiles of ‘others’ and extract a subnetwork with only attributes of
‘other’ and their parent nodes. Using this subnetwork we can sample ‘other’ person—conditional on the household, owner,
spouse information generated from G21—to fill vacancies [npax-2] of household. A similar procedure is applied to estimate
two networks G31 and G32 for those households belonging to type (3). As mentioned, in sampling ‘other’ people, some of the
intra-dependence between those ‘other’ people is not preserved. Applying this procedure we can create a large list of potential
households (say one million) and this list could be used as the base/pool to create dedicated population at zonal levels. For
example, when marginal distributions on individual and household level are available, one may apply the generalized raking
method for survey sampling to get the weight(or probability) of each household appearing in a particular zone (Deville
7 http://matsim.org/scenario/singapore Accessed August 8, 2015.

http://matsim.org/scenario/singapore


Fig. 7. Joint distribution of dwelling type and spouse age (10% PUMS).

Fig. 5. Model structure G on household[green]/owner[red]/spouse[blue] information. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 6. Joint distribution of owner income and spouse age (10% PUMS).
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Fig. 8. Procedure to generate full synthesis population.
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et al., 1993; Casati et al., 2015). Sampling from the one million potential household given this weight will create a realistic sub-
set that meets the zonal marginal distributions/control totals on both individual and household levels.
5. Conclusions and discussion

In this paper, we introduce a new Bayesian network based approach for population synthesis. The Bayesian network inte-
grates graphical thinking into probabilistic modeling, serving as an efficient tool to reproduce the underlying joint distribu-
tion when privacy and confidentiality is of primary concern.

As a popular model with the machine learning communities, the Bayesian network is devoted to identifying a concise
structure that is able to capture and reproduce to complex dependence and higher-order interactions among a large set
of variables. With the increasing number of variables of interest in emerging micro-simulation models, conventional
approaches are essentially trapped by the curse of dimensionality, overfitting, resolution and scalability issues. For example,
the curse of dimensionality can easily break the IPF and MCMC algorithm if one intends to sample the full structure at once.
To this end, we show that Bayesian network models avoid these issues smartly, by abstracting the structure of population
systems using a DAG and local conditional probabilities. In this sense, the proposed Bayesian network model can be consid-
ered as a MCMCwith partial/incomplete conditionals. However, instead of choosing partial/incomplete conditionals arbitrar-
ily, Bayesian network tries to identify the optimal structure, which in turn is easy to interpret and communicate.

Regarding the tradeoff between model complexity and robustness, the Bayesian network model avoids the overfitting by
introducing penalty on size of parameters. The problem of overfitting appears when the training data is not fully represen-
tative to the underlying relationship, which is case for the population synthesis (i.e., a large sparse contingency table with
only 1–5% observations). Thus, considering the large number of parameters in full conditional distributions (in discrete
choice/multinomial linear logistic models), the full conditional MCMC approach is inevitable to the risk of overfitting. In
other words, by using full conditional one may fit the PUMS very well given the excessive number of parameters, but fail
to characterize the real underlying population structure.

Our results also suggest that a general population system in nature, or at least in the case of Singapore, is very well struc-
tured. On the other hand, such structural information of a population system can actually be revealed by a very limited num-
ber of observations. This is rather counterintuitive and suggests that the full structure can be well characterized by partial
knowledge based on the network structure. In this way, the information from observations are extracted more efficiently.
Taking the Bayesian network model demonstrated in Section 4 as an example, we can achieve a very good fit to the under-
lying population by only using a 1% sample (96 individuals). This is almost infeasible by using conventional approaches.
Therefore, for the purpose of privacy protection, Bayesian network can indeed outperform other existing techniques. In
terms of heterogeneity, the conciseness of a Bayesian network model allows us to enrich the sampling pool, yet avoids struc-
ture zeros in the meanwhile. By integrating other advanced methods such as model averaging, one can also capture uncer-
tainty and enrich the heterogeneity that cannot be characterized by a single network (Dash and Cooper, 2004). The Bayesian
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network approach also enables us to efficiently deal with incomplete/missing data. Despite the estimation of model param-
eter in a known network with missing data, which can be solved by using the Expectation–Maximization (EM) algorithm, the
Bayesian network is also able to handle the case that observations are incomplete for an unknown network by integrating
the structural EM (SEM) algorithm (Friedman, 1998).
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