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A B S T R A C T   

As an emerging mobility service, bike-sharing has become increasingly popular around the world. A critical 
question in planning and designing bike-sharing services is to know how different factors, such as land-use and 
built environment, affect bike-sharing demand. Most research investigated this problem from a holistic view 
using regression models, where assume the factor coefficients are spatially homogeneous. However, ignoring the 
local spatial effects of different factors is not tally with facts. Therefore, we develop a regression model with 
spatially varying coefficients to investigate how land use, social-demographic, and transportation infrastructure 
affect the bike-sharing demand at different stations to address this problem. Unlike existing geographically 
weighted models, we define station-specific regression and use a graph structure to encourage nearby stations to 
have similar coefficients. Using the bike-sharing data from the BIXI service in Montreal, we showcase the 
spatially varying patterns in the regression coefficients and highlight more sensitive areas to the marginal change 
of a specific factor. The proposed model also exhibits superior out-of-sample prediction power compared with 
traditional machine learning models and geostatistical models.   

1. Introduction 

Growing concerns about urban sustainability and climate change 
have led to increasing interest in green transportation solutions such as 
bike-sharing (Shaheen et al., 2010). Bike-sharing systems can reduce air 
pollution and natural resource consumption (Cai et al., 2019), improve 
public health (Fishman et al., 2013), and support multimodal transport 
connections by acting as a “last mile” connection to public transport 
(DeMaio, 2009). Because of these advantages, many cities have estab-
lished bike-sharing systems. By 2014, the number of cities that operate 
bike-sharing programs is 855, with a total of 946,000 bikes in operation 
(Fishman, 2016), and the numbers have increased to over 1500 cities 
and 4.5 million bikes recently (Fishman and Allan, 2019). 

Most modern bike-sharing systems are station-based in which users 
can borrow and return bicycles at specified docking stations (DeMaio, 
2009), such as the BIXI system in Montreal, Canada. Lots of studies have 
shown factors, such as weather, built environment and land-use, public 
transportation, socio-demographic attributes, and temporal factors, play 
an essential role in bike-sharing demand (Eren and Uz, 2020). 

Understanding how different factors affect user demand at a station level 
is essential to the planning and operation of a bike-sharing service, 
because planners/operators can make different strategies according to 
the specific factors. More importantly, comprehending the correlations 
between these factors and user demand can help us estimate the po-
tential demand for new stations in advance to assistant service planning. 

Much research has studied the relationship between station-level 
bike-sharing demand and various factors by regression models. Early 
studies used a simple global regression model (e.g., multivariate linear 
regression) with fixed coefficients for all stations (Rixey, 2013; Faghih- 
Imani et al., 2014; El-Assi et al., 2017). This approach neither considers 
spatial correlation nor captures the heterogeneous effects of factors to 
different stations. Therefore, spatial autoregression (SAR) models 
(Zhang et al., 2017; Shen et al., 2018; Guidon et al., 2020) and spatially 
varying coefficients (SVC) models (Bao et al., 2018; Munira and Sener, 
2020; Yang et al., 2020) are applied to address the limitations of the 
simple global regression. Both SAR and SVC models utilize spatial de-
pendencies, while only SVC models can explain the heterogeneous ef-
fects of a specific factor on different stations. 
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Inspired by the network-lasso problem (Hallac et al., 2015), we 
propose a new SVC model to investigate how influential factors 
contribute to the bike-sharing demand spatially. We impose a graph 
regularization to a set of station-specific linear regression models to 
enable adjacent stations sharing similar coefficients. This model’s 
fundamental is entirely new to traditional SVC models, such as the 
geographically weighted regression (GWR) (Brunsdon et al., 1998) and 
Gaussian-process-based models (Gelfand et al., 2003; Banerjee et al., 
2008; Lindgren et al., 2011). Specifically, our approach has a more 
precise form and can scale to large problems. Besides, the graph regu-
larization is more flexible to problems involving non-Euclidean distance 
(Wu et al., 2020). 

We apply the graph regularized SVC method to bike-sharing demand 
from BIXI, a bike-sharing system in Montreal, Canada. The dependent 
variable is the average hourly departure demand at each bicycle station. 
The bike-sharing demand exhibits dissimilarity in temporal, so we 
analyze the demand of the morning peak and afternoon peak separately. 
We select twelve factors related to demographics, land-use, trans-
portation infrastructures, and bicycle facilities as candidate independent 
variables. Then, we apply Pearson correlation analysis on these candi-
date factors to choose the most relevant variables. Unlike only using 
circle buffers to aggregate the factors in most studies, we combine 
Thiessen polygons (Edelsbrunner and Seidel, 1986) and circle buffers 
instead to obtain non-overlapping catchment areas of each station. 

We evaluate the performance of proposed SVC model from both 
regression and prediction aspects. (1) In terms of regression, we find 
coefficients’ spatial distributions given by the proposed SVC model are 
consistent with real-life observations. Moreover, the proposed SVC 
model greatly reduces the regression residual and the spatial autocor-
relation in the residual, compared with a global linear regression. (2) In 
terms of prediction, we apply the proposed SVC model to predict the 
potential demand for new (unobserved) stations. Compared with the 
traditional machine learning models and geostatistical models, the 
proposed model shows superior out-of-sample prediction power. 

We summarize the main contributions of this work as follows: 

• We introduce a graph regularization to station-specific linear re-
gressions, working as a new SCV model. 

• We analyze the effect of land-use, social-demographic, trans-
portation infrastructure, and bicycle facilities on bike-sharing de-
mand at a station-level by the proposed SCV model.  

• We combine circle buffers and Thiessen polygons to extract factors 
from non-overlapping catchment areas, which improves the bike- 
sharing demand modeling. 

• We demonstrate the proposed SVC model’s applicability in inter-
pretability and predicting the potential demand for new stations. 

The remainder of this paper is organized as follows. In Section 2, we 
review related work on bike-sharing demand modeling. Section 3 in-
troduces the data of bicycle demand and influential factors. Section 4 
presents the regression model with spatially varying coefficients, where 
we use a graph regularization to encourage nearby stations to have 
similar coefficients. Section 5 demonstrates the regression result and 
compares the proposed method with other models. Section 6 concludes 
this study and discusses some directions for future research. 

2. Related work 

Over the past decades, numerous research has analyzed the rela-
tionship between bicycle demand and factors such as weather, land-use, 
and social demographics. We review a particular branch of them, where 
a regression model was used to analyze the station-level demand in bike- 
sharing systems. A comprehensive review can be found in Eren and Uz 
(2020). 

Buck and Buehler (2012) inspected the effect of bike facilities, de-
mographics, and land-use factors on the average daily bike-sharing 

check-outs in Washington D.C. by a linear regression model. Rixey 
(2013) compared the effects of similar factors to the average monthly 
bike-sharing demand in three US cities. Faghih-Imani et al. (2014) 
analyzed hourly bike-sharing demand in Montreal with additional 
consideration of weather and temporal factors. A linear mixed model 
was used to capture the dependencies between repeated observations of 
the same station; a similar technique was also applied to a Toronto bike- 
sharing system (El-Assi et al., 2017). More studies are based on a similar 
method to evaluate the effect of weather, temporal factors, building 
environment, and social demographics on bike-sharing demand in 
different cities (Miranda-Moreno and Nosal, 2011; Noland et al., 2016; 
Mateo-Babiano et al., 2016; Scott and Ciuro, 2019). 

The spatial dependency for bike-sharing demand is not sufficiently 
utilized in the research mentioned above. Traditionally, there are two 
main approaches to incorporate spatial dependency: 1) adding spatially 
lagged dependent variable as additional covariates; 2) assuming a 
spatial auto-correlation process in the regression residuals (e.g., 
regression kriging). Here we collectively refer to these two as spatial 
autoregressive (SAR) models. Many studies have applied SAR models to 
model bike-sharing demand. For example. Zhang et al. (2017) studied 
the spatial correlations in bike-sharing demand and quantified the 
spatial correlation in demand between nearby stations. They found a 
significant spatial correlation in the bike-sharing demand. Faghih-Imani 
and Eluru (2016) further incorporated the spatially and temporal in-
teractions into the bike-sharing demand modeling. Shen et al. (2018) 
explored the factors affecting the usage of dockless bikes in nine 
consecutive days by a SAR model. The spatial impact was introduced by 
a spatial weight matrix defined as the inverse distance among neigh-
borhoods within 5 km. Similarly, Guidon et al. (2020) compared a SAR 
model with random forests in bike-sharing demand modeling; results 
showed that SAR outperformed random forests because of the ability to 
incorporate spatial dependence. 

Although SAR models improve the regression performance by spatial 
dependence, the regression coefficients are still the same for all stations. 
Therefore, SAR is also inadequate in depicting the heterogeneous effect 
of factors on different stations. To address this problem, a few studies 
applied spatially varying coefficients (SVC) models in bike-sharing de-
mand modeling. For instance, Bao et al. (2018) used a classical SVC 
model–geographically weighted regression (GWR)–to capture the 
spatial heterogeneity of the effect of points of interest (POI) to bike- 
sharing demand. GWR is a weighted local regression model where the 
distance between two observations determines the weights. Based on the 
similar idea, Munira and Sener (2020) analyzed how socioeconomic and 
land-use influence Strava bike activity by geographically weighted 
Poisson regression (GWPR). All coefficients in traditional GWR are local 
variables; the semi-parametric GWR (S-GWR) model can further incor-
porate both local and global variables in the regression model. In this 
direction, Yang et al. (2019, 2020) used S-GWR to explore the spatially 
varying relationship in Chicago. From the literature, few studies used 
another SVC model apart from GWR. This paper thus analyzes the bike- 
sharing demand by a new SVC framework based on a graph- 
regularization. 

3. Data 

This section introduces the data applied in the research. Section 3.1 
presents the bicycle demand data obtained from BIXI, a Montreal bike- 
sharing system. The bike-sharing related factors are described in Sec-
tion 3.2, we will evaluate the effect of these factors on bike-sharing 
demand. 

3.1. Bike-sharing demand 

BIXI, the first large-scale bike-sharing system in North America, is 
located in Montreal, Canada. In 2019, there are 615 stations and 5.6 
million trip records in the BIXI system. Because of the cold winter in 

X. Wang et al.                                                                                                                                                                                                                                   



Journal of Transport Geography 93 (2021) 103059

3

Montreal, BIXI only operates from April to November each year. We use 
the trip data between May and October of 2019 from BIXI to obtain the 
bicycle ridership since stations are often under adjustments in the 
beginning and end months of this system (Faghih-Imani et al., 2014). 
The historical data recorded six attributes for each bicycle trip: origin 
and destination stations, departure and arrival time, trip duration, and 
membership information. This data set is publicly available from BIXI 
(https://bixi.com). 

For most stations, bicycle demand peaks at two periods on a week-
day—6:00–10:00 am and 3:00–7:00 pm. The spatial distributions of 
bicycle demand are different in these two periods (Fig. 1). Therefore, we 
build two models to quantify the effect of bicycle demand factors in the 
morning and afternoon peaks, respectively. Fig. 1 shows the average 
hourly departure demand distributions for morning and afternoon 
peaks, where each BIXI station is represented by a catchment area with 
250 m radius, and Thiessen polygon is used to determine the boundary 
between overlapping catchment areas (refer to Section 3.2 for more 
details). In the morning, the northwest side of downtown (Le Plateau- 
Mont-Royal) has high departure demand; this is a residential area 
with high population density. In the afternoon, the center of bicycle 
demand shifts toward the downtown area. Several stations along the 
river (such as the Old Port of Montreal, a popular sightseeing area) and 
near Rosemont area with friendly ride paths have significantly high 
demand. In general, afternoon’s hourly departure is higher than that in 
the morning, which conforms with the findings by Faghih-Imani et al. 
(2014). Another interesting observation is that the distribution of bi-
cycle demand is not smooth in the space; there are many demand hot 
spots that either stand-alone or gather along a street. This phenomenon 
could be caused by factors such as metro stations, bicycle paths, and 
commercial streets around the bike stations. 

3.2. Influential factors 

There are numerous factors, including land-usage, transportation 
infrastructure, social demographics, and weather conditions, that 
impact bicycle usage (Rixey, 2013; Faghih-Imani et al., 2014; Zhang 
et al., 2017; El-Assi et al., 2017). As in this paper, we focus on general 
demand level at stations; the weather and temporal factors – which 
affect short-term demand fluctuation – are not considered in this study. 
Other factors form independent variables in our regression model. 

Most previous studies aggregated influential factors by catchment 
areas with a certain radius around bicycle stations. However, the 

Fig. 1. Average hourly departures for BIXI stations in Montreal (left: morning peak, right: afternoon peak).  

Table 1 
Summary of candidate independent variablesa (aggregated by catchment areas).  

Factors Description Min Max Mean 

Population Total residential population. 0 4042 1073.88 
Commercial The number of commercial POI. 0 89 14.94 
Service The number of services POI. 0 55 12.43 
Government The number of government POI. 0 13 1.17 
Park The ratio of parks in the 

catchment area. 
0 1 0.08 

University A binary variable for university. 0 1 0.01 
Metro A binary variable for metro 

station. 
0 1 0.13 

Bus log(number ofbusroutes + 1). 0 3.3 1.21 
Walkscore A measure of walkability from 

0 to 100. 
7 99 79.28 

Road lenth Total length of roads (in meters). 133.27 4824.40 1934.93 
Cycle path The proportion of roads with 

cycle path. 
0 1 0.23 

Capacity The number of docks of a BIXI 
station. 

11 105 23.10  

a Finally selected variables are shown in bold print. 
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catchment areas can overlap if bicycle stations are close to each other 
(Fig. 1), which leads to correlations between independent variables in 
nearby stations. In practice, users tend to choose the bicycle station that 
is nearest to their origin/destination regardless of the distance of other 
walkable stations. Therefore, we use the intersection of 250 m circles 
and Thiessen polygons (Edelsbrunner and Seidel, 1986) to obtain non- 
overlapping catchment areas, as shown in Fig. 1. The radius of 250 m 
has been proven to be suitable for bike-sharing demand modeling 
(Faghih-Imani et al., 2014). Thiessen polygons guarantee every point 
within the catchment area of a station i is closest to the station i 
compared with all other stations. Section 5.4 shows that applying 
Thiessen polygons improves the regression performance compared with 
only using circle buffer. 

We then aggregate candidate independent variables at each catch-
ment area, as summarized in Table 1.These candidate variables will be 
further selected based on the Pearson correlation analysis in Table 2. 
The population is estimated from the demographic data obtained from 
2016 Canada census data at a dissemination block level. Land-use fac-
tors include university, park, and various types of points of interest 
(POI). POI data are obtained from DMTI Enhanced Point of Interest 
(DMTI Spatial Inc., 2019). Based on standard industrial classification 
(SIC, 2020), we obtain three types of POI: commercial (Division G and 
H), service (Division I), and governments (Division J). There are few 
other (heavy) industries since the study area is around the city. Factors 
related to transportation infrastructures include road length, walk score 
(Walk Score, 2020), metro station, and bus route, where walk score is an 
index scale from 0 to 100 measuring the walkability to neighboring 
amenities. Note that we use the logarithm of the bus route number 
because of its long tail feature. Finally, we use the cycle path and station 
capacity as two bicycle-related factors. The numbers in Table 1 are in 
original unit. Due to the giant difference in magnitude, we normalize all 
variables and user demand to 0 to 1 before applying them to the 
regression model. 

We analyze Pearson correlations of normalized data to filter insig-
nificant factors, as shown in Table 2. Commercial POI, walk sore, cycle 
path, and station capacity are four factors that show the strongest pos-
itive correlation to the bike-sharing demand. On the other hand, Road 
length shows the most negative correlation to the bike-sharing demand. 
We remove the government-type POI since it is not significant to both 
the AM and the PM bike-sharing demand at 0.1 level. Besides, the 
service-type POI shows a very high correlation (0.66) to the commercial- 
type POI. Therefore, the service-type POI is also removed to prevent 
multicollinearity. The finally adopted variables are those shown in bold 
print in Table 1. 

4. Model 

4.1. Regression with graph regularization 

Let N be the total number of bicycle stations. For station i (i ∈ {1,…, 
N}), yi denotes its bike-sharing demand, which is the dependent vari-
able. Denote a vector of independent variables by xi = [1,xi1,…,xim]Τ for 
station i, where m is the number of factors (as shown in Table 1). The 
regression model with spatially varying coefficients is described as: 

yi = xΤ
i βi + εi, i = 1,…,N, (1)  

where βi = [βi0,βi1,…,βim]Τ is a coefficient vector for station i, εi is the 
error term. We can estimate the coefficients for all the stations by 
minimizing the sum of squared errors: 

min
∑N

i=1

(
yi − xΤ

i βi
)2
. (2) 

If coefficient vectors βi are the same for all stations, Eq. (1) becomes a 
simple linear regression model and function (2) is the least square 
problem. However, we study the factors’ effect at a station-level and 
assume coefficient vectors are varying over stations. In this situation, Eq. 
(1) is not identifiable since the number of unknown coefficients N × (m 
+ 1) are much larger than the number of equations N; one can find many 
sets of βi that minimizes function (2) (to zero). One solution for 
addressing the problem is that we can impose some constraints on βi to 
make the regression model solvable. 

A fundamental assumption in modeling the spatial effects is that 
nearby stations have similar coefficients. This assumption is based on the 
first law of geography (Tobler, 1970): “everything is related to everything 
else, but near things are more related than distant things.” Many SAR and 
SVC models are based on this assumption. Following this assumption, we 
introduce a graph structure similar to the network lasso problem (Hallac 
et al., 2015). Consider the bike-sharing stations on a graph G = (V ,ℰ), 
where V and ℰ are the set of nodes and edges, respectively. Each node 
represents a bicycle station (|V|= N), and an edge represents a connection 
between two nodes. Instead of a fully connected graph, we assume each 
station is connected to its K nearest stations with undirected edges, where 
K controls the number of adjacent stations. By doing so, the specific local 
information of each station is incorporated into the model, and the 
computation time can also be substantially reduced. There are other 
possible approaches to build a graph, such as using distance-based 
methods or a Gabriel graph (Gabriel and Sokal, 1969). This paper 
applied the k-nearest neighbor graph as an example. 

The linear regression model for each station with a graph regulari-
zation (GR) term, which penalizes the difference between βi in adjacent 
nodes, is proposed in: 

Table 2 
Pearson correlations between normalized factors and demand.   

Pop Comm Service Gov Park Univ Metro Bus Walk Road Cycle Capacity 

Pop 1.0**            
Comm 0.14** 1.0**           
Service 0.4** 0.66** 1.0**          
Gov 0.14** 0.21** 0.23** 1.0**         
Park − 0.14** − 0.25** − 0.21** − 0.06 1.0**        
Univ − 0.01 0.03 0.02 0.04 − 0.03 1.0**       
Metro − 0.09** 0.13** 0.09** 0.03 − 0.05 0.08** 1.0**      
Bus 0.13** 0.25** 0.29** 0.18** − 0.03 0.09** 0.34** 1.0**     
Walk − 0.11** 0.35** 0.24** 0.16** − 0.32** 0.06 0.05 0.03 1.0**    
Road 0.51** 0.02 0.27** 0.02 0.01 − 0.05 0.09** 0.28** − 0.43** 1.0**   
Cycle − 0.1** − 0.15** − 0.16** − 0.13** 0.18** 0.02 − 0.07* − 0.14** − 0.1** − 0.21** 1.0**  
Capacity − 0.27** − 0.04 − 0.2** 0.03 0.15** 0.14** 0.07* 0.06 0.05 − 0.2** 0.07 1.0** 
AM demand − 0.01 0.14** 0.12** − 0.01 − 0.02 0.1** 0.04 0.07* 0.48** − 0.34** 0.16** 0.11** 
PM demand − 0.35** 0.23** − 0.00 0.01 0.07* 0.15** 0.26** 0.04 0.46** − 0.47** 0.17** 0.44**  

* Significant at 0.1 level. 
** Significant at 0.05 level. 
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min
∑N

i=1

(
yi − xΤ

i βi
)2

+ λ
∑

(i,j)∈ℰ
wij

⃦
⃦βi − βj

⃦
⃦2

2, λ ≥ 0, (3)  

where the parameter λ balances the regression error and the difference 
between coefficients in adjacent nodes, wij is the weight of the edge (i, j), 
which is a decaying function of distance. Here we apply wij(α) = dij

− α with 
α > 0, where dij is the distance between node i and j, and α controls the 
decaying speed. When λ = 0, each node has its own optimization without 
considering other nodes. Increasing λ encourages the neighboring nodes 
to have similar coefficients. With a sufficiently large λ, function (3) 
degrades to one (or several) linear regression model(s) with all stations 
in each connected component1 of the graph sharing the same co-
efficients. Note we assume each independent variable has a station- 
specific coefficient in (3). However, this framework can be easily 
extended to a hierarchical structure with both fixed and varying co-
efficients, like the semi-parametric GWR model (Yang et al., 2020), by 
adjusting the graph regularization term. 

Function (3) is a convex optimization problem and can be efficiently 
solved using optimization software, such as CVXPY. For large-scale 
problems, the alternating direction method of multipliers (ADMM) can 
be used to solve the problem in a distributed and scalable manner 
(Hallac et al., 2015). 

For a new station p with unknown bike-sharing demand, we can 
estimate its factor coefficients βp by interpolating the coefficients β⋆ 

from known stations and then achieve demand prediction of station p. 
Let Nei(p) denote the K nearest stations of station p, and we want to find 
a βp that minimizes the difference between the coefficients of neighbors, 
leading to the following optimization: 

min
∑

q∈Nei(p)

wpq

⃦
⃦
⃦βp − β⋆

q

⃦
⃦
⃦

2

2
. (4) 

Function (4) can also be efficiently solved by convex optimization, 
and the prediction ability of a model can work as an indicator to measure 
the performance of the model. 

In summary, the advantages of the proposed GR model are mainly 

twofold: (i) make function (2) solvable by adding a graph regularization 
term into the linear regression model and obtain spatially varying co-
efficients as a consequence to investigate the factors’ effect on demand 
at station-level; (ii) have a flexible structure to be adjusted for different 
problems. 

4.2. Hyper-parameter tuning 

The regression with graph regularization model has three hyper- 
parameters: λ determines the intensity of the graph regularization 
term, K is the number of neighbors of a node, and α controls the weight 
decaying of edges. We use 10-fold cross-validation to search for the 
optimal values of hyper-parameters. First, the whole data set (demand 
and corresponding factors) is normalized by min-max feature scaling to 
bring all values into the range [0,1]. Next, all stations are randomly 
partitioned into 10 equal-sized groups. In each iteration of the cross- 
validation, retain one group as the validation set V validate, the remain-
ing stations belong to the training set V train. For a given combination of 
hyper-parameters, the coefficients of training stations are estimated by 
(3), and the coefficients of test stations are obtained by (4). Then, the 
root mean square error (RMSE) is calculated by the demand prediction 
on the validation set V validate: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i∈V validate

(

yi − ŷi

)2

|V validate|

√
√
√
√
√

, (5)  

where ŷi = xΤ
i β⋆

i is the predicted bike-sharing demand for station i. 
Repeat the cross-validation process for 10 times and the performance of 
a hyper-parameter setting is evaluated by the average RMSE of the 10- 
fold cross-validation. The general procedure of 10-fold cross- 
validation of searching optimal regularization parameters is summa-
rized in Algorithm 1. 

Algorithm 1. 10-fold cross-validation for searching optimal hyper- 
parameters. 

To determine the search scope of hyper-parameters, we first discuss 
the effect of each hyper-parameter. Fig. 2 illustrates the effect of λ from 
one round cross-validation, where we use the afternoon peak data and 
set K = 4 and α = 1. It can be seen that when λ is close to 10− 3, the RMSE 

1 A connected component of an undirected graph is a subgraph in which any 
two nodes are connected to each other by paths, and which is not connected to 
nodes other than this component. 
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on the training set is almost 0 because each node is optimized inde-
pendently. However, the model is over-fitting and generalizes poorly to 
the validation set with high RMSE. When λ is very large, the impact of 
graph regularization is much stronger, which means the model reduces 
to a global regression with invariant coefficients. As a consequence, 
large λ increases the RMSE for both the training and validation sets. To 
get the best performance on the validation set, we need to find a λ that 
appropriately balances the regression error and the difference between 
neighbors, as marked by the circle with the minimal RMSE on the 
validation set in Fig. 2. 

K determines the number of neighbors of a node. When K is very 
small (1 or 2), the graph may have too many separate components, 
which impedes information to be shared among stations and even results 

in an ill-posed problem. A too-large K (e.g., K ≈ N) is also inappropriate 
since it connects far away (less relevant) stations and also increases the 
computational burden. Based on the experimental results, a proper in-
terval for K in this problem is between 3 and 7. 

Compared with λ and K, α is a less important parameter. The effect of 
α on the RMSE of the validation set is marginal and can be compensated 
by tuning a proper λ, because these two hyper-parameters together 
determine the graph regularization term. We also test exponential-type 
weight decaying function wij(α) = exp (− αdij) with α > 0, similar ob-
servations are found. This is different from models like GWR, where the 
bandwidth – controls the speed of weight decaying – plays an important 
role. A possible explanation could be: the graph regularization is a local 
constraint, and the edges between a node and its neighbors are of similar 
distances (small variance); therefore, when α changes, the weights of 
edges of a node change near proportionally. 

Based on the above analysis, we set α = 1 and perform a grid search 
on λ from 0.5 to 10 at 0.5 interval, K ∈ {3,4,5,6,7} by 10-fold cross- 
validation. We select λ = 2, K = 4 for the morning peak and λ = 2.5, 
K = 4 for the afternoon peak, when the minimal average RMSE of the 10- 
fold cross-validation is achieved. 

Finally, we investigate the graph when K = 4. The number of nodes 
∣V ∣ = 615, and the number of edges ∣ℰ ∣ = 1485. Note ∣ℰ∣/∣V ∣ = 2.4 is 
slightly denser than a two-dimensional grid graph. Fig. 3 shows the 
histogram of edges’ length. We can see a clear long-tail distribution. 
Most connected stations are within 500 m of distance, with a peak at 
around 250 m, which accords with the 250-m radius of the catchment 
area. This is because the system is designed to be accessible within a 
walking distance. Nonetheless, a few stations are far away from other 
stations. In fact, there are six stations that are disconnected from the 
other 609 stations. In general, the graph when K = 4 achieves a balance 
between connectivity and redundancy. 

5. Results 

We apply the proposed graph regularized regression (GR) to the BIXI 
bike-sharing data and exhibit the result from four aspects. Firstly, using 
the distribution of coefficients, we analyze how different factors affect 
stations’ demand from a global view. Next, we select three specific 
stations to explain the advantage of the GR model in detail. Further, we 
use Moran’s I test to diagnose the spatial auto-correlation of regression 
residuals. Finally, we compare the ability of GR with other models in 
predicting the demand for new stations. 

5.1. Coefficients spatial distribution 

The factor coefficients are estimated based on the optimal hyper- 
parameters from Section 4.2. The numerical distribution for each coef-
ficient in our model is shown as the box plots in Fig. 4, along with a 

Fig. 3. Histogram of the length of edges.  

Fig. 4. The box plot of factor coefficients for morning peak (left) and afternoon peak (right).  

Fig. 2. The effect of λ to the RMSE of training and validation set, using demand 
of afternoon peak, K = 4, α = 1. 
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global linear regression (LR) model shown by a red line. The box of each 
factor depicts the Q1 to Q3 quartiles of the varying coefficients from the 
proposed graph regularized regression model (GR); the whiskers show 
the range of these coefficients. It can be seen that the general result of GR 
(sign and scale of coefficients) is consistent with the linear regression. 
Actually, linear regression is a particular case of our model when the 
graph is fully connected and λ is large enough, which constrains all the 
stations to have the same factor coefficients. Note that some outliers in 
the coefficient distributions are caused by a small group of disconnected 
remote stations in the graph, whose bike-sharing demands are very low. 

To get more insights from the result, we first clarify the meaning of a 
coefficient value. Since the data set has been normalized before applying 
Algorithm 1, a coefficient represents how many changes to the demand 
when there is a marginal change in the corresponding (normalized) 

factor. We refer to this as the importance/effect of this factor to the bike- 
sharing demand. 

In Fig. 4, linear regression shows walkscore has the largest AM co-
efficient, while GR model indicates population is the dominating factor 
for the bike-sharing demand in the morning. This is because a linear 
regression coefficient is constant and is a compromise of stations with 
different patterns. In fact, most people depart from their homes in the 
morning; it is thus reasonable to see the residential population plays a 
more important role in affecting the morning demand. The station ca-
pacity has the most significant effect on the demand in the afternoon. 
There are two reasons: (1) the demand in the afternoon is much larger 
than that in the morning (see Fig. 1), a shortage of supply may occur, 
and the real demand could be constrained by the capacity (Gammelli 
et al., 2020); (2) the station capacity is designed to satisfy the demand 

Fig. 5. The factor coefficients distribution of morning peak with optimal parameters λ = 2, α = 1 and K = 4.  
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pattern, and therefore exhibits a high correlation to the demand in the 
afternoon peak. Besides population and capacity, the commercial POI 
coefficient also has an evident difference between the morning and the 
afternoon. Specifically, the coefficient is larger in the afternoon than 
that in the morning. It can be explained by more users go for commercial 
activity (e.g., shopping, entertainment) in late time, which is in accor-
dance with the reality. 

We also visualize the spatial distributions for coefficients in the 
morning and the afternoon peaks by Fig. 5 and Fig. 6, where red markers 
mean positive values and green markers mean negative values. The 
coefficient distribution of university is not shown, because there are only 
8 (1.3%) stations near a university. Therefore, the university factor has 
little effect for most stations (xuni = 0), but the numerical values for the 
coefficients of university can be found in Fig. 4. 

In the morning, the population coefficients increase toward Pointe- 
Saint-Charles area and downtown area. Pointe-Saint-Charles, a lively 
community with many parks, bike paths, and new housing units, has the 
largest coefficient of population. Also, there are plenty of residential 
apartments in the downtown area. As for POI, bus route and walk score, 
we can see the Plateau-Mont-Royal area and a part of Rosemont-La 
Petite-Patrie area is the coefficient center. These areas are famous for 
their commercial streets, delightful parks and attractive culture. Spe-
cifically, La Fontaine Park, a large compound park, has the highest park 
coefficient. The cycle path factor (defined as the proportion of roads 
with cycle path) positively affects the demand, while the road length has 
a negative effect. It indicates that the automobile-oriented road design is 
not friendly to bicycles. 

On the other side, the factor coefficients can also be used to detect 

Fig. 6. The factor coefficients distribution of afternoon peak with optimal parameters λ = 2.5, α = 1 and K = 4.  
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“unusual stations”. For example, there are two unusual points for the 
metro coefficients shown in Fig. 5, one is next to the metro station 
Laurier, another is next to the metro station Vendôme. These two sta-
tions have significantly higher metro coefficients than their neighbors. It 
is because both stations are the transport hub and serve the Orange Line, 
and the result is consistent with their too high metro coefficients and bus 
route coefficients. 

Fig. 6 shows the spatial distributions for factor coefficients in the 
afternoon peak. Compared with the coefficients of the morning, except 
road length, the number of residential population and bus routes also 
negatively correlates to the departure demand in the afternoon, which 
means more these two factors would have less bicycle demand. This may 
indicate an uneven distribution of the residential and work areas in 
Montreal. In the afternoon, the POI, walk score and cycle path still 
positively impact the Plateau-Mont-Royal area and a part of Rosemont- 
La Petite-Patrie area. 

The stations near Parc Jean-Drapeau and the Old Port are two special 
stations in the afternoon. Parc Jean-Drapeau, an isolated island situated 
to the east of downtown Montreal, has many attractions, including an 
amusement park, casinos, environmental museum. The metro station 
Jean-Drapeau is the main entrance to enter the island except by driving. 
It is reasonable that this station has a high park coefficient and metro 
coefficient. The Old Port of Montreal is one of the most popular tourist 
resorts, attracting millions of people. So the capacity of bike stations is 
quite essential for the demand at this location. 

5.2. Examples of estimated demand 

We select three stations to further explain how the spatially varying 
coefficients impact the BIXI demand compared with the global linear 
regression model. The locations of the selected stations are marked in 
Fig. 7, where S1 is near Metro Charlevoix in the Pointe-Saint-Charles 

area, S2 is on the Parc Jean-Drapeau, and S3 is around Metro Mont- 
Royal in the Plateau-Mont-Royal area. The three stations represent 
four kinds of demand: morning peak station (S1) vs. afternoon peak 
station (S3) and low demand station (S2) vs. high demand station (S3). 

The factor coefficients of each station are in Fig. 8. LR model is a 
unified spatial model, where all the stations have the same factor co-
efficients (red line in Fig. 8). The proposed spatially varying coefficients 
GR model takes spatial heterogeneity into account; therefore, each sta-
tion has its unique factor coefficients (other lines in Fig. 8). From Fig. 7, 
the LR model shows lower performance on estimating demand in the 
three stations. Moreover, the LR model can obtain negative estimated 
demand when the real demand is low (S2). However, the GR model can 
estimate a better demand in high/low demand or morning/afternoon 
peak demand. 

Although the factor coefficients are slight difference to S1, S2 and S3 
in Fig. 8, it matters to estimate the bike-sharing demand (Fig. 7) and 
reflects the factor effect on demand for each station as discussed in 
Section 5.1. For example, S1 and S3 have larger metro coefficients 
comparing with S2 in the morning because S1 and S3 are near the metro 
while S2 on a sightseeing island. 

5.3. Regression residuals 

Besides interpreting regression coefficients, it is also important to 
diagnose the regression residuals. Fig. 9 shows the regression residuals 
of LR and GR. The residuals of GR are much smaller than LR for both the 
morning and the afternoon cases. Particularly, the residuals of LR in the 
morning (upper left of Fig. 9) exhibit strong spatial autocorrelation — 
negative values for the center of the study area and positive for the 
peripheral area. In contrast, the spatial autocorrelation is greatly 
relieved by the GR model. For the afternoon case, the residual patterns 
of LR and GR are more similar. The outputs of both LR and GR are lower 

Fig. 7. The location of selected stations (left) and the estimated demand by LR and GR (right).  

Fig. 8. The factor coefficients of LR and three stations by GR.  

X. Wang et al.                                                                                                                                                                                                                                   



Journal of Transport Geography 93 (2021) 103059

10

than the real demand for a few “hot spots”. While GR is more accurate 
than LR in general. 

We further use Moran’s I test (Li et al., 2007) to diagnose the global 
spatial autocorrelation of the regression residuals. Moran’s I is an index 
ranging from − 1 to 1. A random arrangement (no spatial autocorrela-
tion) gives a near-zero Moran’s I index. We use the inverse distance 
weight matrix in the Moran’s I test. The test results are shown in Table. 
3, where the null hypothesis is that residuals have no spatial autocor-
relation. The p-values of LR for both morning and afternoon cases are 
less than 0.001, showing strong spatial autocorrelation. The p-values of 
GR are larger than 0.05, and we cannot reject the null hypothesis. 
Therefore, Moran’s I test shows the spatial autocorrelation for the 

residuals of GR is not significant. 

5.4. Out-of-sample prediction 

The ability to predict the potential demand of new stations is 
essential in measuring the goodness of a regression model. It is also of 
practical significance in predicting the demand for new stations in 
advance. Examining the out-of-sample prediction also tells if a regres-
sion is over-fitted, since GR can infinitely approximate to training data 
when λ → 0+. Therefore, we evaluate the out-of-sample prediction 
power of the proposed model by reserving 20% randomly selected sta-
tions as a test set. The coefficients of the test set can be estimated based 
on function (4). To avoid randomness, we repeat the test 20 times with 
different training and test set separations, and the hyper-parameter 
setting is fixed for all the tests based on the result of Section 4.2. We 
use the RMSE in Eq. (5) and the R2 in Eq. (6) to measure the goodness of 
the prediction in the test set. 

R2 = 1 −

∑
i∈V test

(

yi − ŷi

)2

∑
i∈V test

(yi − y)2 , (6) 

Fig. 9. The regression residuals of LR and GR.  

Table 3 
Moran’s I test on residual.   

Morning Afternoon 

LR GR LR GR 

Residual sum of squares 6.431 2.570 5.573 3.460 
Moran’s I 0.340 0.034 0.128 − 0.010 
p-value of Moran’s test <0.001 0.082 <0.001 0.684  
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where y is the average of the real demand yi, and a larger R2 means a 
higher correlation between the real and the predicted demand. 

We compare the proposed model with the following benchmark 
models in the out-of-sample prediction:  

• Random forest: randomly construct and merge a multitude of decision 
trees to predict the demand.  

• SVM regression: extend support vector machines to solve a regression 
problem.  

• KNN: predict the demand based on K nearest factor vectors in the 
training set.  

• Nearest neighbors average: the average demand of K nearest neighbors  
• Linear regression: a global linear regression with invariant factor 

coefficients.  
• Regression kriging: apply an ordinary kriging on the residuals of a 

linear regression model. 
• Geographically weighted regression (GWR): a weighted linear regres-

sion model with the weight determined by the distance between two 
observations.  

• Graph regularization with circle buffer: use 250 m circle buffers to 
aggregate factors and apply the proposed method. 

Random forest, SVM regression, and KNN are classical machine 
learning models achieved by the scikit-learn package in Python. Geo-
statistical models, such as Regression kriging and GWR, are completed 
by R packages automap and GWmodel, respectively. All the hyper- 
parameters of the benchmarks are tuned by a grid search and cross- 
validation to make a fair comparison. Note we use the same 20 
training-test separations for all the models. The code and experiment 
replication is available in our Github repository. 

Table 4 shows the prediction results of the proposed method and 
benchmarks models. We use the average RMSE and R2 with the standard 
deviation in parentheses. Note that we multiply RMSE by ten for a better 
display effect. Overall, geostatistical models perform better than ma-
chine learning models, which indicates the importance of geographic 
information in predicting the bike-sharing demand. The proposed model 
is comparable to the two geostatistical models and performs the best in 
predicting the afternoon demand. The regression kriging exhibits the 
best performance in predicting bike-sharing demand at morning rush 
hours. The performance of regression kriging is affected by the spatial 
correlation of the demand. As shown in Fig. 1, the spatial distribution of 
the demand in the afternoon is less smooth (weak spatial autocorrela-
tion) than that in the morning. In this situation, the regression kriging is 

not as good as the proposed graph regularization method. Also, 
compared with the proposed model, the factor coefficients in regression 
kriging are invariant for different stations, which cannot explain the 
varying effects of a factor to different stations. 

The linear regression model shows a relatively poor performance 
compared with other methods because the linear regression is a global 
model without considering the spatial heterogeneity of stations. We also 
apply the proposed graph regularization on the factors extracted from 
250-m circle buffers around stations. One shortcoming of the circular 
buffer is that the catchment areas could overlap, leading to inaccurate 
factor extraction. As expected, using the catchment areas based on 
Thiessen polygons has better performance than using circle buffers. 

6. Conclusion and discussion 

In this paper, we develop a new SVC regression model by graph 
regularization. This new model can quantify the effect of factors on bike- 
sharing demand at a station level and predict the demand of new bike- 
sharing stations. Specifically, we build a linear regression model for 
each station to obtain its unique factor coefficients and assume the 
neighboring stations have similar factor coefficients imposed by a graph 
regularization term. By doing so, the strong spatial correlations/de-
pendencies in bike-sharing can be well-incorporated into the model. 
Under the same assumption, the potential demand for new stations can 
also be estimated. 

The bike-sharing data collected from BIXI with other urban data are 
applied in the case study to demonstrate the performance of the model. 
We divide the BIXI data into the morning peak (AM) and the afternoon 
peak (PM) to illustrate the temporal characteristic of the factors. From 
the spatial distributions of factor coefficients, we find that the popula-
tion and the station capacity are the dominating factors for the bike- 
sharing demand in the morning and in the afternoon. Specifically, the 
Pointe-Saint-Charles area shows the largest coefficient of popularity, 
and the Old Port, a famous sightseeing/commercial area, is highly 
affected by the bike capacity. 

In predicting the demand for new stations, our model outperforms 
machine learning baseline models and shows comparable performance 
over geostatistical models (e.g., SAR and SVC). It demonstrates the 
applicability and potential for the graph-regularization-based SVC 
models in the spatial regression task. 

Besides, the proposed model can also be used for clustering and 
anomaly detection when applying lasso term 

∑
(i,j)∈ℰwij‖βi − βj‖2 as the 

graph regularization (Hallac et al., 2015). The single-element cluster can 
be regarded as an anomaly since its coefficients are significantly 
different from its neighbors. 

Although the model has various applications, one limitation is that 
the current model does not consider temporal factors, such as weather, 
time of day, and cannot work on the short-term prediction task. Another 
limitation is that the model purely assumes the smoothness of co-
efficients between nearby stations while it does not fully exploit the 
dependent variable’s spatial correlation. As a result, it is still possible to 
exist (minor) spatial correlation in the regression residuals. 

There are several directions for future research. (1) We define the 
link weight as the function of the distance between two stations and 
study the prediction performance with different link weight parameter 
α. In future work, we can also explore different types of link weight 
functions, such as considering the correlation between origin and 
destination (Chai et al., 2018). (2) We can also investigate the effects of 
temporal factors, such as weather, under a similar framework. For 
example, turning the factor coefficient β into a time-varying version βt by 
imposing a temporal smoothness assumption. (3) Moreover, the 
regression model with the graph regularization can be applied to a 
broader transportation context, such as public transit and urban 
planning. 

Table 4 
The average RMSE and R2 with the standard deviation in parentheses in the 
prediction problem. Best results are highlighted in bold.   

AM departures PM departures 

RMSE×10 R2 RMSE×10 R2 

Linear regression 1.041 
(0.117) 

0.300 
(0.066) 

1.016 
(0.096) 

0.494 
(0.070) 

Random forest 0.970 
(0.119) 

0.392 
(0.075) 

1.071 
(0.147) 

0.443 
(0.080) 

SVM regression 0.995 
(0.126) 

0.362 
(0.070) 

1.053 
(0.140) 

0.461 
(0.076) 

KNN 1.032 
(0.110) 

0.310 
(0.072) 

1.124 
(0.152) 

0.390 
(0.061) 

Nearest neighbors 
average 

0.938 
(0.122) 

0.431 
(0.077) 

1.209 
(0.169) 

0.294 
(0.083) 

Regression kriging 0.809 
(0.101) 

0.567 
(0.050) 

0.956 
(0.106) 

0.535 
(0.078) 

GWR 0.854 
(0.103) 

0.514 
(0.081) 

0.959 
(0.100) 

0.525 
(0.121) 

GR (circle buffer) 0.871 
(0.111) 

0.510 
(0.063) 

1.014 
(0.107) 

0.498 
(0.068) 

GR (proposed) 0.831 
(0.104) 

0.554 
(0.051) 

0.949 
(0.096) 

0.560 
(0.059)  
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